
ESL-ISE - A SIMULATION TOOL DEVELOPED FOR THE SPACE INDUSTRY

John Pearce
ISIM International Simulation Ltd, 26/28 Leslie Hough Way

Salford, M6 6AJ, UK, e-mail isim@cogsys.com
Roy Crosbie

California State University, Chico CA 95929-0003, USA
crosbie@ecst.csuchico.edu

Keywords: Graphical packages; Interactive programs; Continuous simulation

ABSTRACT

ESL-ISE (European Space Agency Simulation Language
- Integrated Simulation Environment) is an advanced
simulation tool, originally developed for the space industry,
but which finds application in any field where complex non-
linear dynamic system simulation is required.

A summary is presented which outlines the development
of the tool through a series of ESA funded contracts and
identifies key space related applications. The architecture
and major features of the underlying simulation language
(ESL) are described.

The newly developed graphical user interface, ISE, is
described. ISE provides a powerful graphical editor enabling
systems to be described in block diagram form while
allowing the inclusion of ESL code modules where
appropriate. A toolbox concept allows a simulation element
palette to be configured for specific application fields. The
ISE environment supports simulation program development,
interactive control of simulation execution, and post-run
analysis. During simulation execution, the user has access to
all simulation program variables and parameters, which may
be examined and changed. Run-time and post-run display of
results (in both graphical and numerical form) is managed
through a comprehensive display manager.

A number of the features of ESL and ISE are illustrated
through an example of an ESL program and an ISE
application

BACKGROUND

The simulation package, ESL-ISE, has evolved from a
series of contracts undertaken by ISIM International
Simulation Limited, and the University of Salford for the
European Space Agency over a period of some twenty years.
The initial contract (Hay et al 1981), which was a research

study of simulation algorithms suitable for parallel
architecture hardware, produced a proposal for a new
simulation language standard (Crosbie and Hay 1982) -
CSSL81. The proposed standard included features that
allowed the decomposition of a large simulation into
segments that could, in principle, be executed on parallel
hardware. (Although initially this feature was emulated on a
single processor, distributed simulation over a network of
computers was fully implemented at a later date).

A second contract saw the implementation of a minimal
software suite, which supported the proposed CSSL standard
and the European Space Agency Simulation Language (ESL)
was born. There then followed a series of contracts in which
the language was extended and enhanced to meet the
requirements of ESA. These extensions included the
addition of graphical interfaces for block diagram model
description, interactive simulation execution control and
graphical analysis of results. Other enhancements included
embedded and remote simulation capability, C++ translation,
matrix arithmetic and both single and multiple-variable
transfer function representation of dynamic elements.

During recent stages of the product development, a
completely new graphical user interface has been added
providing an Integrated Simulation Environment (ISE) from
which all phases of the simulation process can be managed.

Although initially developed for the European Space
Agency, ESL-ISE is a general-purpose continuous system
simulation tool, with discrete event capability, that finds
applications in the non-space sector as well as the space
sector. The following are a selection of past and recent
applications:

• Design of the Giotto (Halley's Comet probe) "Despin"
antenna system.

• Investigation of thermal vibrations in the solar panels of
the Hubble Space Telescope. (Poelaert 1987)

• Modelling of Nickel Cadmium battery systems for ERS1
(Earth Resource Satellite). (Hay 1987)

• Attitude Control Computer's Environment Simulation
(ACC EnvSim) for the XMM Software Validation
Facility (SVF). (Holiday 2000)

• Dynamics Simulation Library of the Model Library for
Software Validation (MOLISOVA) developed by
GMV.(Bonillo 2000)

• Software Validation Facility for the Attitude and Orbit
Control Subsystem (AOCS) software of the scientific
satellite ISO and the integrated data handling and AOCS
software for communications satellite Artemis (Aidt and
Mejnertsen 2000)

• Off-shore Gas-Rig training simulator.

• Gas Compressor station simulation (Kraft and Pearce
2000)

• Water filter bed simulation.

ESA SIMULATION LANGUAGE (ESL)

ESL is an powerful continuous system simulation
language. Developed originally for the European Space
Agency for use on advanced space projects it is now widely
used in industry and academia for applications requiring
accurate and robust computer simulations of dynamic
systems. ESL has the following features:

ESL Features

• robustness (a simulation engine that runs for ever)
• handling of very large models
• extensive checking of model correctness
• accurate treatment of discontinuities
• wide range of numerical integration algorithms including

stiff algorithms
• vector and matrix arithmetic
• both differential equation and transfer function model

description
• submodel concept allowing hierarchical modelling of

complex systems
• distributed simulation over a number of computers
• interpreter mode or translation into FORTRAN or C++
• embedded simulation and interface to other programs
• snapshot facility allowing the state of a simulation at a

specific time to be saved for resumption later
• real-time capability

The ESL software

The ESL software suite, shown in Figure 1, comprises
three main programs - the compiler which converts an ESL
source program into an intermediate code (h-code); an
interpreter which executes the h-code directly; and a
translator which converts the h-code into either C++ or
FORTRAN which is then further compiled and linked with
the appropriate ESL run-time library and any user libraries to
produce an executable program. A user has the option of
using the interpreter route for fast program development or
the translator route for efficient production runs and the
ability to link to external libraries.

Figure 1

ESL Program Structure

ESL has a modular structure allowing a complex system
to be modelled in an hierarchical manner. The highest level
module of the dynamic description is the model which can
call lower level submodels. A single submodel may be
called more than once, each call representing a separate
instance of the submodel (this illustrates the object oriented
nature of an ESL program which maps naturally in to C++
when the translator option is chosen). Other modules
permitted in ESL include: procedure containing non-
dynamic code; packages which allow sharing of data
between modules; and segments which are to be executed
concurrently. At a level above the model is an experiment
which defines how the simulation is to be performed.
Figure 2 shows the general structure of an ESL program.

ESL program

COMPILER

h-code

TRANSLATORINTERPRETER

C++/FORTRAN

Figure 2
Simple ESL Example

To give a flavour of the ESL language, a simple example
is presented in presented in Figure 3. The program simulates
the vertical flight of a rocket governed by the equation:

g
mass

dragthrust
theigh −−=′′ ,

where thrust is constant provided fuel is available, drag is
proportional to velocity squared and g is acceleration due to
gravity.

In this example we have a single model and an
experiment. Notice the traditional INITIAL-DYNAMIC-
TERMINAL structure of the model. Code in the STEP
region is executed every integration step while the
COMMUNICATION region is executed at regular time
intervals as defined by the parameter “cint”. The experiment
makes several call of the model for different initial fuel
quantities. Notice the use of the “if” and “when” structures
to detect the exhaustion of the fuel supply and the rocket
maximum height.

STUDY
MODEL rocket(REAL: max_ht := REAL: f0);
REAL: height, drag, thrust, velocity,

fuel, Mass;
CONSTANT REAL: g/9.81/, Mrk/300.0/,

burn/20.0/;
LOGICAL: power, done/false/;
INITIAL

--Initial conditions.
height:=0.0; height':=0.0; fuel:=f0;
max_ht:=0.0;
DYNAMIC

-- Rocket dynamics.
velocity:= height';

drag:= 0.5 * velocity * abs(velocity);
Mass:= Mrk + fuel;

-- Do we still have fuel and hence power?
power:= fuel > 0.0;

-- Thrust is constant until fuel exhausted.
thrust:= IF power THEN 35000.0 ELSE 0.0;
height'':= (thrust - drag)/Mass - g;
fuel':= if power then -burn else 0.0;

-- Detect maximum height.
WHEN height' < 0.0 then
done:= true;
max_ht:= height;
END_WHEN;
STEP

-- Save results for post run analysis.
PREPARE "rocket", t, height, velocity,

thrust, fuel, drag, Mass;
-- Stop when rocket starts decent.

TERMINATE done;
COMMUNICATION
Tabulate t, height, velocity;
TERMINAL
print "End of run";

END ROCKET;
-- EXPERIMENT
REAL: f0, max_ht;
-- Set integration parameters
algo:= rk5; cint:= 15.0; tfin:= 120.0;
-- Do simulation for varying initial fuel.
FOR f0:= 1400.00 .. 2000.0 STEP 200.0
LOOP
-- Call the model to do a simulation run.

rocket(max_ht := f0);
print "With fuel ", f0:6.1, " kg",
" height achieved was ",max_ht:-10.1,"m.";
END_LOOP;
END_STUDY

Figure 3

INTEGRATED SIMULATION ENVIRONMENT (ISE)

At an early stage in the evolution of the ESL software
suite, there existed a number of independent programs - ESL
compiler; ESL Interpreter; FORTRAN and C++ translators;
Graphical block diagram input program (IMP); Post run
graphical display program (DISP); ESL Simulation
Execution Control (ESL SEC). There was a degree of
integration. For example, in the non-ESL SEC environment,
the compilation, interpretation or translation and execution
processes could be initiated from the graphical input program
(IMP). Run time and post-run graphical results could also be
specified from IMP (the latter by invoking DISP). Under
ESL SEC control (at the time only available on Sun Solaris
systems), all the simulation processes could be invoked from
the ESL SEC user interface. However, although innovative
at its time of creation, IMP had limitations and used non-
standard window management (on PC systems, it was a DOS
program). Also, ESL SEC was written in the OPEN LOOK

EXPERIMENT

MODEL

SUBMODELSUBMODEL

SUBMODELSUBMODELSUBMODEL

style, by then outdated. It was proposed to re-write the
graphical user interfaces using Motif and bring the various
components of ESL together within an Integrated Simulation
Environment (ISE) shown schematically in Figure 4. ISE
provides the following features:

Figure 4

• multi-window graphical block diagram editor for model
construction

• inclusion of ESL coded submodels where appropriate

• interactive control of simulation execution

• run-time and post-run graph plotting

• user configurable simulation element palette

• application specific toolbox capability

• display manager

• on-line help

The functionality of the old IMP, DISP and ESL SEC
programs have been incorporated into ISE, which now
provides the development environment from which each
stage of the simulation activity can be managed.

ISE includes a graphical editor for block diagram style
model descriptions, while allowing textual ESL code to be
used where appropriate (for example, to describe highly non-
linear elements). Standard simulation elements can be
selected from a palette and interconnected on a canvas to
build up the simulation description.

ESL submodels can be created and included in a diagram
through a special submodel element. An option is provided
to configure the simulation element palette itself with user

defined submodels and thus create specialised application
specific toolboxes.

Once a simulation program has been created (graphically,
textually or a combination of both), compilation is initiated
from ISE. The user then has the option to execute the
program immediately through an interpreter, or further
translate it to FORTRAN or C++. The resulting executable
program may then be run from ISE. In either case, execution
is managed by an interactive control panel, which provides
run-time control of the simulation.

Access is provided to all program variables and
parameters from the control panel. This includes simulation
parameters such as the communication interval, final
simulation time, choice of integration algorithm and error
tolerances. All variables and parameters can be set and
changed dynamically from the control panel.

Graphical and tabulated output can be specified on the
block diagram through the use of special simulation display
elements or alternatively from a versatile display manager
window.

All run time commands and output specifications can be
logged to a driver file that can be used at a later time to
repeat simulation scenarios and full support is provided for
the ESL snapshot facility.

AN EXAMPLE - A SERVO CONTROL SYSTEM

As an example if the ISE interface, we consider a
simulation of the servo control system shown in Figure 4.

Figure 5

ESLISE
Text

Editor

COMPILER
Graphical editor

Build specification

Execution control

Display
management

Toolbox

INTERPRETER

TRANSLATOR

()
()

K s

T s s
e

c

12 8

1 1

. +
+

()
()
A s

T s sc

200

1 2

+
+

K

R L s
t

A A+
1

J sm

1

s

Kb

()
K T

T s
V G

c1 3+

1

N

K

N
s1

J sL

1

s

FL

Th

Thd

N

Gearbox and load

Controller

Motor sub-system

The system naturally splits into three sub-modules - the
Controller, the Motor sub-system and the Gearbox and load.
These modules are represented by ESL submodels
interconnected at the model level. Figures 6,7 and 8 are the
ISE diagrams for the three submodels. Note that the transfer
function annotation on the diagrams is generated
automatically from the definition of the simulation element
attributes. Figure 9 shows the complete ISE window after
the simulation has run with graphical and tabulated output
displayed on the screen.

Figure 6 - The Controller

Figure 7 - The Motor Sub-System

Figure 8 - The Gearbox and Load

Figure 9 - Screen dump of Servo example

THE FUTURE

In continuing to develop the ESL-ISE product, the
following are some possibilities being considered:

• Vector diagrams - currently block diagrams only allow
scalar connections between simulation elements, i.e. a
line on the diagram represents a scalar variable. A
logical extension would be to allow vector connections
between a set of new multivariable simulation elements
thus taking full advantage of ESL's vector and matrix
capability.

• Combined continuous discrete (CCD) simulation - A
study undertaken for ESA established the capability of
ESL for CCD simulation and recommendations were
made for the extension of the language to facilitate this.
Such language enhancements could be mapped through
to the graphical interface.

• Component objects - the contract has shown that an ESL
simulation can be distributed over a number of platforms
and other projects have integrated ESL simulations with
other applications. A related approach would be to
provide a means of automatically creating ESL
simulations as COM or CORBA objects, thus facilitating
communication with other programs and the ability to
link to Web pages.

• Specialised toolkits - the ISE simulation element palette
can be configured with user defined submodels. A
possible area for development would be the creation of
libraries submodels for specialised applications. These
would be mapped onto appropriate simulation elements
on the palette.

CONCLUSION

The development and current state of the ESL-ISE
simulation tool has been described. The product represents
the results of several contracts for the European Space
Agency carried out over a number of years and has now
reached a state of maturity making it suitable for both space
and non space applications.

TRIBUTE

Many people and organisations have been instrumental in
the creation of the ESL-ISE simulation software. However,
this paper would be incomplete without special mention of
driving force behind the ESL-ISE project - the late Professor
John Lewis Hay - founder of ISIM International Simulation
Limited. It is through John's knowledge of needs of industry

and commerce for robust and accurate simulation software
and his great attention to detail that the product is and
continues to be successful.

ACKNOWLEDGMENTS

The work described was performed under ESTEC contracts:
4155/79, 4790/81, 5663/83, 6466/85, 9041/90/NL/JG,
1011/92/NL/JG. The authors gratefully acknowledge the
services provided by the University of Salford and Salford
University Business Services Ltd. and the essential
contribution of Cogsys Limited, Salford, UK.

REFERENCES

Bonillo, C., Vega, E, and Mejnertsen, S. 2000. "Flight
Dynamic System Modelling using ESL". In Proceedings of
2000 Western Multiconference (San Diego, CA, Jan 23-27).
The Society for Computer Simulation International, San
Diego, CA, USA.

Crosbie, R. E., Hay, J. L. and Pearce, J. G. 1981.
"Simulation Studies with Modern Computer Structures".
Final Report, ESTEC Contract 4155/79, ESTEC, Noordwijk,
The Netherlands.

Crosbie, R. E. and Hay, J. L. 1982. "Towards New Standards
for Continuous-System Simulation Languages". In
Proceedings of Summer Computer Simulation Conference
(Denver, CO, USA, July).

Hay, J. L. 1987. "ESL Simulation of Spacecraft Battery
Cells". In Proceedings of UKSC Conference on Computer
Simulation (Bangor, UK, Sept 9-11). UKSC/SCS, Ghent,
Belgium, 92-97.

Holliday, P. 2000 "XMM Attitude Control Computer
Environment Dynamics Simulation for SVF". In Proceedings
of 2000 Western Multiconference (San Diego, CA, Jan 23-
27). The Society for Computer Simulation International, San
Diego, CA, USA.

Kraft, R. J. and Pearce, J. G. 2000. "Using ESL in an
Integrated Real-Time Compressor Simulation Application".
In Proceedings of 2000 Western Multiconference (San
Diego, CA, Jan 23-27). The Society for Computer
Simulation International, San Diego, CA, USA

Poelaert, D. 1987. "Hubble Space Telescope Solar Array: A
Thermally induced Disturbance Torque". Technical Report
ESA STM-238, ESTEC, Noordwijk, The Netherlands.

